Please use this identifier to cite or link to this item: http://hdl.handle.net/11434/592
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRichardson, Martin-
dc.contributor.otherZhang, Lihai-
dc.contributor.otherMendis, Priyan-
dc.date2012-07-
dc.date.accessioned2016-04-15T06:48:27Z-
dc.date.available2016-04-15T06:48:27Z-
dc.date.issued2012-08-
dc.identifier.citationClinical and Experimental Pharmacology & Physiology. 2012 Aug;39(8):706-10.en_US
dc.identifier.issn1440-1681en_US
dc.identifier.urihttp://hdl.handle.net/11434/592-
dc.description.abstractBone is a remarkable living tissue that provides a framework for animal body support and motion. However, under excessive loads and deformations, bone is prone is to damage through fracture. Furthermore, once the bone is weakened by osteoporosis, bone fracture can occur even after only minimal trauma. Various techniques have been developed to treat bone fractures. Successful treatment outcomes depend on a fundamental understanding of the biochemical and biomechanical environments of the fracture site. Various cell types (e.g. mesenchymal stem cells, chondrocytes, osteoblasts and osteoclasts) within the fracture site tightly control the healing process by responding to the chemical and mechanical microenvironment. However, these mechanochemical regulatory mechanisms remain poorly understood at the system level owing to the large range of variables, such as age, sex and disease-associated material properties of the tissue. Computational modelling can play an important role in unravelling this complexity by combining mechanochemical interactions, revealing the dominant controlling processes and optimizing system behaviour, thereby enabling the development and evaluation of treatment strategies for individual patients.en_US
dc.publisherWiley Online Libraryen_US
dc.subjectBiomechanical Phenomenaen_US
dc.subjectPhysiologyen_US
dc.subjectBone and Bonesen_US
dc.subjectCytologyen_US
dc.subjectPathologyen_US
dc.subjectPhysiologyen_US
dc.subjectModels, Biologicalen_US
dc.subjectOsteoporosisen_US
dc.subjectFracturesen_US
dc.subjectPatient-Specific Computational Modelingen_US
dc.subjectMesenchymal Stem Cellsen_US
dc.subjectChondrocytesen_US
dc.subjectOsteoblastsen_US
dc.subjectOsteoclastsen_US
dc.subjectBiomaterialsen_US
dc.subjectGrowth Factorsen_US
dc.subjectHealing Processen_US
dc.subjectMusculoskeletal Clinical Institute, Epworth HealthCare, Victoria, Australiaen_US
dc.titleRole of chemical and mechanical stimuli in mediating bone fracture healing.en_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1111/j.1440-1681.2011.05652.xen_US
dc.identifier.journaltitleClinical and Experimental Pharmacology & Physiologyen_US
dc.description.pubmedurihttp://www.ncbi.nlm.nih.gov/pubmed/22142430en_US
dc.description.affiliatesDepartment of Infrastructure Engineering, The University of Melbourne, Melbourne, Victoria, Australia.en_US
dc.type.studyortrialReviewen_US
dc.type.contenttypeTexten_US
Appears in Collections:Musculoskeletal

Files in This Item:
There are no files associated with this item.


Items in Epworth are protected by copyright, with all rights reserved, unless otherwise indicated.